RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Средневолжского математического общества // Архив

Журнал СВМО, 2021, том 23, номер 3, страницы 247–272 (Mi svmo799)

Эта публикация цитируется в 1 статье

Математика

Применение непрерывного метода решения нелинейных операторных уравнений к прямым и обратным задачам рассеяния

И. В. Бойковa, В. А. Рудневb, А. И. Бойковаa, Н. С. Степановa

a Пензенский государственный университет
b Санкт-Петербургский государственный университет

Аннотация: Дано обобщение непрерывного метода решения нелинейных операторных уравнений в банаховых пространствах и описано его применение для исследования прямых и обратных задач теории рассеяния. Непрерывный метод решения нелинейных операторных уравнений основан на Ляпуновской теории устойчивости решений систем обыкновенных дифференциальных уравнений. Он применим к операторным уравнениям в банаховых пространствах, в том числе, и в случаях, когда производная Фреше (Гато) нелинейного оператора необратима в окрестности начального значения. В работе он применяется к решению задач Дирихле и Нейманна для уравнения Гельмгольца и для определения волнового числа в обратной задаче. Рассмотрены внутренние и внешние задачи Дирихле и Нейманна для уравнения Гельмгольца, определенного в областях с гладкими и кусочно- гладкими границами. В случае, когда уравнение Гельмгольца рассматривается в области с гладкой границей, существование и единственность решения следует из классической теории потенциала. При решении уравнения Гельмгольца в областях с кусочно гладкими границами проводится винеровская регуляризация. Задачи Дирихле и Нейманна для уравнения Гельмгольца методами теории потенциала трансформируются в сингулярные интегральные уравнения второго рода и в гиперсингулярные интегральные уравнения первого рода. Для приближенного решения сингулярных и гиперсингулярных интегральных уравнения построены и обоснованы вычислительные схемы методов коллокации и механических квадратур. Особенности непрерывного метода иллюстрируются решением краевых задач для уравнения Гельмгольца. Рассмотрены приближенные методы восстановления волнового числа в уравнении Гельмгольца.

Ключевые слова: уравнение Гельмгольца, граничные условия Дирихле и Неймана, обратные задачи, непрерывный метод решения операторных уравнений.

УДК: 519.63

MSC: Primary 65M12; Secondary 65N12, 65N21

DOI: 10.15507/2079-6900.23.202103.247-272



© МИАН, 2024