Аннотация:
В данной работе исследован вопрос единственности решения для одного класса линейных интегральных уравнений Вольтерра-Стилтьеса третьего рода. Особую роль в исследовании играет понятие производной по возрастающей функции, которое было введено А. Асановым в 2001 г. Это понятие является обобщением обычного понятия производной функции и является обратным оператором для одного класса интеграла Стилтьеса. На основе производной по возрастающей функции, методом интегральных преобразований и методом неотрицательных квадратичных форм доказаны теоремы единственности решения для рассматриваемого класса интегральных уравнений. Построены примеры, удовлетворяющие условиям теорем единственности. Из приведенных примеров видно, что без использования понятия производной по возрастающей функции трудно исследовать линейные интегральные уравнения Вольтерра-Стилтьеса первого и третьего рода.
Ключевые слова:интегральные уравнения Вольтерра-Стилтьеса, третий род, производная по возрастающей функции, единственность решения.