Аннотация:
Естественным способом создания новых динамических систем является рассмотрение прямых произведений уже известных систем. Данная работа посвящена изучению некоторых динамических свойств прямых произведений гомеоморфизмов и диффеоморфизмов. В частности, доказывается, что цепно рекуррентное множество прямого произведения гомеоморфизмов является прямым произведением цепно рекуррентных множеств, а также, что прямое произведение диффеоморфизмов сохраняет гиперболическую структуру на прямом произведении гиперболических множеств. Известно, что если диффеоморфизм имеет гиперболическое цепно рекуррентное множество, то он является $\Omega$-устройчивым. Таким образом, из результатов настоящей работы следует, что прямое произведение $\Omega$-устойчивых диффеоморфизмов также является $\Omega$-устойчивым. Еще один вопрос, затронутый в статье, касается существования энергетической функции – гладкой функции Ляпунова, множество критических точек которой совпадает с цепно-рекуррентным множеством системы. Этот вопрос решается для прямого произведения диффеоморфизмов, уже обладающих энергетическими функциями. Доказывается, что в этом случае функция может быть найдена в виде взвешенной суммы их энергетических функций.