Аннотация:
Рассмотрена система дифференциальных уравнений, описывающая движение гиростата под действием момента потенциальных, гироскопических и циркулярно-гироскопических сил. Указан вид момента сил, при котором система имеет три первых интеграла заданного вида. Приводится аналог теоремы В. И. Зубова для представления решений уравнений гиростата степенными рядами и показана возможность применения такого подхода для прогнозирования движений. Для аналога случая Лагранжа производится интегрирование в квадратурах. Также указаны аналоги случая полной динамической симметрии и случая Гесса. На основе принципа оптимального демпфирования, разработанного В. И. Зубовым, предложена конструкция управляющего момента, создаваемого циркулярно-гироскопическими силами, обеспечивающая выход одной из координат на постоянную (хотя и неизвестную заранее) величину или переход вектора состояния на поверхность уровня частного интеграла Гесса. Приведен числовой пример, для которого найдено двухпараметрическое семейство точных почти периодических решений, представленных тригонометрическими функциями.
Ключевые слова:гиростат, момент потенциальных и гироскопических сил, первые интегралы, интегрируемость, точные решения, аналоги классических случаев, управление.