RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Средневолжского математического общества // Архив

Журнал СВМО, 2022, том 24, номер 1, страницы 76–95 (Mi svmo823)

Эта публикация цитируется в 1 статье

Математика

Эндоморфизмы и антиэндоморфизмы некоторых конечных группоидов

А. В. Литаврин

Сибирский федеральный университет, г. Красноярск

Аннотация: В настоящей работе изучаются антиэндоморфизмы некоторых конечных группоидов. Ранее были введены специальные группоиды $S(k, q)$ с порождающим множеством из $k$ элементов и порядком $k(1+k)$. Ранее исследовались вопросы поэлементного описания моноида всех эндоморфизмов данного группоида (в частности, автоморфизмов). Было показано, что всякий конечный моноид изоморфно вложим в моноид всех эндоморфизмов подходящего группоида $S(k, q)$. В данной статье приводится поэлементное описание множества всех антиэндоморфизмов группоида $S(k, q)$. Установлено, что в зависимости от группоида $S(k, q)$ множество всех его антиэндоморфизмов может быть замкнутым или не замкнутым относительно композиции отображений. Для поэлементного описания антиэндоморфизмов изучается действие произвольного антиэндоморфизма на порождающих элементах группоида. При данном подходе антиэндоморфизм попадает в один из трех классов. Антиэндоморфизмы из двух полученных классов будут являться эндоморфизмами данного группоида. Оставшийся класс антиэндоморфизмов в зависимости от конкретного группоида $S(k, q)$ может состоять или не состоять из эндоморфизмов. В данной работе исследуются эндоморфизмы некоторых конечных группоидов $G$ с порядком, удовлетворяющим некоторому неравенству. Построены некоторые эндоморфизмы таких группоидов и показано, что всякий конечный моноид изоморфно вкладывается в моноид всех эндоморфизмов подходящего группоида $G$. Для доказательства данного результата существенно используется обобщение теоремы Кэли на случай моноидов (полугрупп с единицей).

Ключевые слова: эндоморфизм, антиэндоморфизм, автоморфизм, антиавтоморфизм, конечный группоид, моноид.

УДК: 512.548.2

MSC: 20N02

DOI: 10.15507/2079-6900.24.202201.76-95



Реферативные базы данных:


© МИАН, 2024