Аннотация:
В работе рассматривается задача Коши для параболического уравнения с частными производными в римановом многообразии ограниченной геометрии. Приводится формула, выражающая сколь угодно точные (в $L_p$-норме) аппроксимации к решению задачи Коши через параметры – коэффициенты уравнения и начальное условие. При этом многообразие не предполагается компактным, что создаёт значительные технические трудности. Например, интегралы по многообразию становятся несобственными в случае, когда многообразие имеет бесконечный объём. Представленный метод аппроксимации основан на теореме Чернова об аппроксимации операторных полугрупп.
Ключевые слова:параболическое уравнение на многообразии, задача Коши, представление решений, аппроксимация решений, многообразие ограниченной геометрии, полугруппа операторов.