RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Средневолжского математического общества // Архив

Журнал СВМО, 2023, том 25, номер 2, страницы 37–52 (Mi svmo854)

Математика

Двухцветный граф каскадов Морса-Смейла на трехмерных многообразиях

Е. Я. Гуревич, Е. К. Родионова

Национальный исследовательский университет – Высшая школа экономики в Нижнем Новгороде

Аннотация: Цель исследования — выделить класс каскадов (диффеоморфизмов) Морса-Смейла с трехмерным фазовым пространством, допускающих топологическую классификацию при помощи комбинаторных инвариантов. В общем случае препятствием к такой классификации является возможность дикого вложения замыканий сепаратрис в объемлющее многообразие, приводящая к счетному множеству топологически неэквивалентных систем уже в классе каскадов Морса-Смейла, имеющих всего одну седловую неподвижную точку. Для решения поставленной проблемы несущее многообразие диффеоморфизма представляется в виде объединения трех попарно непересекающихся множеств: связных аттрактора и репеллера, размерность которых не превышает единицы, и дополнения к ним, состоящего из блуждающих точек диффеоморфизма, названного характеристическим множеством. Известно, что топология пространства орбит ограничения диффеоморфизма Морса-Смейла на характеристическое множество и вложения в него проекций двумерных сепаратрис является полным топологическим инвариантом для диффеоморфизмов Морса-Смейла на трехмерных многообразиях. Кроме того, ранее описаны свойства пространства орбит, необходимые и достаточные для включения диффеоморфизма Морса-Смейла в топологический поток. Эти результаты используются в настоящей работе, чтобы показать, что классы топологической сопряженности диффеоморфизмов Морса-Смейла, включающихся в топологический поток и не имеющих гетероклинических кривых, допускают комбинаторное описание. Более точно, в работе рассмотрен класс диффеоморфизмов Морса-Смейла без гетероклинических пересечений, заданных на замкнутых трехмерных многообразиях, включающихся в топологические потоки и не имеющие гетероклинических кривых. Каждому диффеоморфизму из этого класса поставлен в соответствие двухцветный граф, описывающий взаимное расположение двумерных сепаратрис седловых периодических точек. Доказано, что существование изоморфизма двухцветных графов, сохраняющего цвет ребер, является необходимым и достаточным условием топологической сопряженности каскадов. Показано, что скорость алгоритма, различающего двухцветные графы, полиномиально зависит от числа его вершин. Описан алгоритм построения представителя каждого класса топологической сопряженности.

Ключевые слова: диффеоморфизмы Морса-Смейла, топологическая классификация, структурно-устойчивые диффеоморфизмы, двухцветный граф, топологическая сопряженность

УДК: 517.91

MSC: 37D15

DOI: 10.15507/2079-6900.25.202302.37-52



© МИАН, 2024