Аннотация:
Настоящая работа посвящена градиентно-подобным потокам на поверхностях, представляющих из себя потоки Морса-Смейла без предельных циклов, и их топологической классификации с точностью до топологической сопряжённости. Такие потоки, называемые иначе потоками Морса, были неоднократно классифицированы посредством различных топологических инвариантов. Одним из таких инвариантов является двуцветный граф К. Вонга, действующий лишь для градиентно-подобных потоков на ориентируемых поверхностях. Целью данного исследования было обобщение графа Вонга на случай произвольных замкнутых поверхностей. В работе вводится новый инвариант – обобщённый граф Вонга. Посредством обобщённого графа Вонга получена топологическая классификация градиентно-подобных потоков на произвольных поверхностях, т. е. с добавлением неориентируемого случая; в т. ч. выполнена реализация обобщённого графа Вонга стандартным потоком Морса на поверхности.
Для получения всех результатов используется конструктивный метод: для доказательства классификационной теоремы строится гомеоморфизм, отображающий области с одинаковым поведением траекторий друг в друга, а граф позволяет установить верное расположение таких областей друг относительно друга.
Для доказательства теоремы реализации также используется конструктивный метод: по графу строится стандартный поток, топологически сопряжённый каждому потоку, которому соответствует данный граф.
Таким образом, в работе построена полная топологическая классификация потоков Морса на поверхностях посредством инварианта, в некоторых отношениях превосходящего в простоте и практичности как ориентированный граф Пейшото, так и трёхцветный граф Ошемкова-Шарко.
Ключевые слова:градиентно-подобный поток, поток Морса, топологическая классификация, граф Вонга, поток на поверхности