Аннотация:
Одной из конструкций получения потоков на многообразии является построение надстройки над каскадом. В этом случае поток является неособым, то есть не имеет неподвижных точек. C. Смейл показал, что надстройки над сопряженными диффеоморфизмами топологически эквивалентны. Обратное утверждение неверно в общем случае, но, при некоторых предположениях сопряженность диффеоморфизмов равносильна эквивалентности надстроек. Так, в работе Дж. Икегами показано, что критерий работает в случае, когда диффеоморфизм задан на многообразии, чья фундаментальная группа не допускает эпиморфизм в группу $\mathbb Z$. Там же построены примеры не сопряженных диффеоморфизмов окружности, надстройки над которыми эквивалентны. В работе И. В. Голиковой и О. В. Починки рассмотрены надстройки над диффеоморфизмами окружностей и доказано, что полным инвариантом эквивалентности надстроек над сохраняющими ориентацию диффеоморфизмами является равенство периодов периодических точек, порождающих их диффеоморфизмов. В то же время из результата А. Г. Майера известно, что для сопряженности сохраняющих ориентацию диффеоморфизмов необходимым также является совпадение чисел вращения. В тоже время, надстройки над меняющими ориентацию диффеоморфизмами окружностей эквивалентны тогда и только тогда, когда топологически сопряжены соотвествующие диффеоморфизмы окружностей. В работе С. Х. Зининой и П. И. Починки доказано, что надстройки над меняющими ориентацию декартовыми произведениями диффеоморфизмов окружностей эквивалентны тогда и только тогда, когда топологически сопряжены соотвествующие диффеоморфизмы торов. В настоящей работе получен классификационный результат для надстроек над декартовыми произведениями сохраняющих ориентацию диффеоморфизмов окружностей.
Ключевые слова:многообразие, надстройка над диффеоморфизмом, сохраняющий ориентацию диффеоморфизм окружности, число вращения, декартово произведение диффеоморфизмов