RUS  ENG
Полная версия
ЖУРНАЛЫ // Theoretical and Applied Mechanics // Архив

Theor. Appl. Mech., 2016, том 43, выпуск 2, страницы 255–273 (Mi tam16)

Эта публикация цитируется в 6 статьях

Noether symmetries and integrability in time-dependent Hamiltonian mechanics

Božidar Jovanović

Mathematical Institute SANU, Serbian Academy of Sciences and Arts, Belgrade, Serbia

Аннотация: We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré–Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré–Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative) integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.

Ключевые слова: symmetries, the principle of stationary action, Poincaré–Cartan form, contact Hamiltonin vector fields, Noether theorem.

MSC: 37J15, 37J35, 37J55, 70H25, 70H33

Поступила в редакцию: 21.01.2016
Исправленный вариант: 19.07.2016

Язык публикации: английский

DOI: 10.2298/TAM160121009J



Реферативные базы данных:


© МИАН, 2024