RUS  ENG
Полная версия
ЖУРНАЛЫ // Theoretical and Applied Mechanics // Архив

Theor. Appl. Mech., 2017, том 44, выпуск 1, страницы 15–34 (Mi tam18)

Эта публикация цитируется в 2 статьях

On integrals, Hamiltonian and metriplectic formulations of polynomial systems in 3D

Oğul Esena, Anindya Ghose Choudhuryb, Partha Guhac

a Department of Mathematics, Gebze Technical University, Gebze-Kocaeli, Turkey
b Department of Physics, Surendranath College, Calcutta, India
c SN Bose National Centre for Basic Sciences, Salt Lake, Kolkata, India

Аннотация: The first integrals of the reduced three-wave interaction problem, the Rabinovich system, the Hindmarsh–Rose model, and the Oregonator model are derived using the method of Darboux polynomials. It is shown that, the reduced three-wave interaction problem, the Rabinovich system, the Hindmarsh–Rose model can be written in a bi-Hamiltonian/Nambu metriplectic form.

Ключевые слова: Darboux integrability method, the reduced three-wave interaction problem, Rabinovich system, Hindmarsh–Rose model, oregonator model, metriplectic Structure, Nambu-Poisson brackets.

MSC: 37K10, 70G45

Поступила в редакцию: 18.11.2016
Исправленный вариант: 23.02.2017

Язык публикации: английский

DOI: 10.2298/TAM161118001E



Реферативные базы данных:


© МИАН, 2024