RUS  ENG
Полная версия
ЖУРНАЛЫ // Theoretical and Applied Mechanics // Архив

Theor. Appl. Mech., 2017, том 44, выпуск 1, страницы 103–114 (Mi tam22)

Эта публикация цитируется в 3 статьях

Billiards on constant curvature spaces and generating functions for systems with constraints

Božidar Jovanović

Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia

Аннотация: In this note we consider a method of generating functions for systems with constraints and, as an example, we prove that the billiard mappings for billiards on the Euclidean space, sphere, and the Lobachevsky space are sympletic. Further, by taking a quadratic generating function we get the skew-hodograph mapping introduced by Moser and Veselov, which relates the ellipsoidal billiards in the Euclidean space with the Heisenberg magnetic spin chain model on a sphere. We define analogous mapping for the ellipsoidal billiard on the Lobachevsky space. It relates the billiard with the Heisenberg spin model on the light-like cone in the Lorentz–Poincare–Minkowski space.

Ключевые слова: Dirac brackets, generating functions, ellipsoidal billiards, Heisenberg spin model, skew-hodograph mapping.

MSC: 37J10, 53D22, 51M05

Поступила в редакцию: 23.05.2017
Исправленный вариант: 11.06.2017

Язык публикации: английский

DOI: 10.2298/TAM170523005J



Реферативные базы данных:


© МИАН, 2024