RUS  ENG
Полная версия
ЖУРНАЛЫ // Theoretical and Applied Mechanics // Архив

Theor. Appl. Mech., 2021, том 48, выпуск 2, страницы 201–236 (Mi tam96)

Эта публикация цитируется в 2 статьях

Tulczyjew's triplet for Lie groups III: Higher order dynamics and reductions for iterated bundles

Oğul Esena, Hasan Gümralb, Serkan Sütlüc

a Department of Mathematics, Gebze Technical University, Gebze, Kocaeli, Turkey
b Department of Mathematics, Yeditepe University, Ataşehir, İstanbul, Turkey
c Department of Mathematics, Işık University, Şile, İstanbul, Turkey

Аннотация: Given a Lie group $G$, we elaborate the dynamics on $T^*T^*G$ and $T^*TG$, which is given by a Hamiltonian, as well as the dynamics on the Tulczyjew symplectic space $TT^*G$, which may be defined by a Lagrangian or a Hamiltonian function. As the trivializations we adapted respect the group structures of the iterated bundles, we exploit all possible subgroup reductions (Poisson, symplectic or both) of higher order dynamics.

Ключевые слова: Euler-Poincaré, equations, Lie-Poisson equations, higher order dynamics on Lie groups.

MSC: 70H50, 70G65, 53D20, 53D17

Поступила в редакцию: 12.03.2021
Принята в печать: 15.06.2021

Язык публикации: английский

DOI: 10.2298/TAM210312009E



Реферативные базы данных:


© МИАН, 2024