RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2017, том 22(38), выпуск 1, страницы 71–80 (Mi thsp172)

On a limit behavior of a random walk with modifications upon each visit to zero

Andrey Pilipenkoab, Vladislav Khomenkob

a Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
b National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Аннотация: We consider the limit behavior of a one-dimensional random walk with unit jumps whose transition probabilities are modified every time the walk hits zero. The invariance principle is proved in the scheme of series where the size of modifications depends on the number of series. For the natural scaling of time and space arguments the limit process is (i) a Brownian motion if modifications are “small”, (ii) a linear motion with a random slope if modifications are “large”, and (iii) the limit process satisfies an SDE with a local time of unknown process in a drift if modifications are “moderate”.

Ключевые слова: Invariance principle, self-interacting random walk, perturbed random walk.

MSC: 60F17, 60J50, 60J55

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024