RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2017, том 22(38), выпуск 2, страницы 34–46 (Mi thsp178)

Эта публикация цитируется в 1 статье

Negative binomial construction of random discrete distributions on the infinite simplex

Yuguang F. Ipsen, Ross A. Maller

Research School of Finance, Actuarial Studies & Statistics, Australian National University, Canberra, Australia

Аннотация: The Poisson-Kingman distributions, $\mathrm{PK}(\rho)$, on the infinite simplex, can be constructed from a Poisson point process having intensity density $\rho$ or by taking the ranked jumps up till a specified time of a subordinator with Lévy density $\rho$, as proportions of the subordinator. As a natural extension, we replace the Poisson point process with a negative binomial point process having parameter $r>0$ and Lévy density $\rho$, thereby defining a new class $\mathrm{PK}^{(r)}(\rho)$ of distributions on the infinite simplex. The new class contains the two-parameter generalisation $\mathrm{PD}(\alpha, \theta)$ of [13] when $\theta>0$. It also contains a class of distributions derived from the trimmed stable subordinator. We derive properties of the new distributions, with particular reference to the two most well-known $\mathrm{PK}$ distributions: the Poisson–Dirichlet distribution $\mathrm{PK}(\rho_\theta)$ generated by a Gamma process with Lévy density $\rho_\theta(x) = \theta e^{-x}/x$, $x>0$, $\theta > 0$, and the random discrete distribution, $\mathrm{PD}(\alpha,0)$, derived from an $\alpha$-stable subordinator.

Ключевые слова: Poisson–Kingman distribution, Poisson–Dirichlet distribution, stick-breaking and size-biased constructions, trimmed $\alpha$-stable subordinator, mixing distribution.

MSC: Primary: 60G51, 60G52, 60G55

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024