Эта публикация цитируется в
1 статье
Negative binomial construction of random discrete distributions on the infinite simplex
Yuguang F. Ipsen,
Ross A. Maller Research School of Finance, Actuarial Studies & Statistics, Australian National University, Canberra, Australia
Аннотация:
The Poisson-Kingman distributions,
$\mathrm{PK}(\rho)$, on the infinite simplex, can be constructed from a Poisson point process having intensity density
$\rho$ or by taking the ranked jumps up till a specified time of a subordinator with Lévy density
$\rho$, as proportions of the subordinator. As a natural extension, we replace the Poisson point process with a negative binomial point process having parameter
$r>0$ and Lévy density
$\rho$, thereby defining a new class
$\mathrm{PK}^{(r)}(\rho)$ of distributions on the infinite simplex. The new class contains the two-parameter generalisation
$\mathrm{PD}(\alpha, \theta)$ of [13] when
$\theta>0$. It also contains a class of distributions derived from the trimmed stable subordinator. We derive properties of the new distributions, with particular reference to the two most well-known
$\mathrm{PK}$ distributions: the Poisson–Dirichlet distribution
$\mathrm{PK}(\rho_\theta)$ generated by a Gamma process with Lévy density
$\rho_\theta(x) = \theta e^{-x}/x$,
$x>0$,
$\theta > 0$, and the random discrete distribution,
$\mathrm{PD}(\alpha,0)$, derived from an
$\alpha$-stable subordinator.
Ключевые слова:
Poisson–Kingman distribution, Poisson–Dirichlet distribution, stick-breaking and size-biased constructions, trimmed $\alpha$-stable subordinator, mixing distribution.
MSC: Primary: 60G51,
60G52,
60G55
Язык публикации: английский