RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2018, том 23(39), выпуск 2, страницы 33–40 (Mi thsp292)

Limit theorems for the number of clusters of the Arratia flow

E. V. Glinyanaya, V. V. Fomichov

Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivska str. 3, Kiev 01004, Ukraine

Аннотация: In this paper we prove the central limit theorem for the number of clusters formed by the particles of the Arratia flow starting from the interval $[0;n]$ as $n\to\infty$, obtain an estimate of the Berry–Esseen type for the rate of this convergence, and prove the corresponding functional law of the iterated logarithm.

Ключевые слова: Central limit theorem, Berry–Esseen inequality, functional law of the iterated logarithm, coalescing Brownian motions, Arratia flow, clusters.

MSC: Primary 60F05, 60F17, 60G55; Secondary 60G60

Язык публикации: английский



© МИАН, 2024