RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2012, том 18(34), выпуск 2, страницы 59–76 (Mi thsp30)

Эта публикация цитируется в 1 статье

Large deviation principle for processes with Poisson noise term

A. V. Logachov

74, R. Luxemburgh Str., Donetsk 83114, Ukraine

Аннотация: Let $\tilde{\nu}_n(du,dt)$ be a centered Poisson measure with the parameter $n\Pi(du)dt,$ and let $a_n(t,\omega)$ and $f_n(u,t,\omega)$ be stochastic processes. The large deviation principle for the sequence $\eta_n(t)=x_0+\int\limits_0^t a_n(s)ds+\frac{1}{\sqrt{ n}\varphi(n)}\int\limits_0^t\int f_n(u,s)\tilde{\nu}_n(du,ds)$ is proved. As examples, the large deviation principles for the normalized integral of a telegraph signal and for stochastic differential equations with periodic coefficients are obtained.

Ключевые слова: Large deviations, rate functional, Poisson measure, telegraph signal process.

MSC: Primary 60H10; Secondary 60H20

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024