RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2020, том 25(41), выпуск 1, страницы 1–24 (Mi thsp309)

General inference in semiparametric models through divergences and the duality technique with applications

Salim Bouzebdaa, Mohamed Cherfib

a Alliance Sorbonne Université, Université de Technologie de Compiègne, L.M.A.C., Compiègne, France
b Département de Mathématiques, Faculté des Sciences Exactes et Informatique, University of Chlef (Université Hassiba Benbouali)

Аннотация: In this paper, we extend the dual divergence approach to general semiparametric models and study dual divergence estimators for semiparametric models. Asymptotic properties such as consistency, asymptotic normality of the proposed estimators are deeply investigated by mean the sophisticated modern empirical theory. We investigate the exchangeably weighted estimators in this setting and establish the consistency. We finally consider the functional $M$-estimator and obtain its weak convergence result.

Ключевые слова: Divergences, $M$-estimators, Robust estimation, Semiparametric, Minimum distance estimators, empirical processes.

MSC: Primary 62F40; 62F35; 62F12; 62G20; 62G09; Secondary 62G30

Язык публикации: английский



© МИАН, 2024