RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2011, том 17(33), выпуск 1, страницы 39–49 (Mi thsp39)

Эта публикация цитируется в 1 статье

Discrete analogue of the Krylov–Veretennikov expansion

Glinyanaya E. V.

Institute of Mathematics of the Ukrainian Academy of Sciences, Kiev, Ukraine

Аннотация: We consider a difference analogue of the stochastic flow with interaction in ${\mathbb R}.$ The discrete-time flow is given by a difference equation with random perturbation which is defined by a sequence of stationary Gaussian processes. We obtain the Itô–Wiener expansion for a solution to the stochastic difference equation which can be regarded as a discrete analogue of the Krylov–Veretennikov representation for a solution to the stochastic differential equation.

Ключевые слова: Random interaction systems, discrete-time flow, Itô–Wiener series expansion.

MSC: 60H25, 60K37, 60H40

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2025