RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2010, том 16(32), выпуск 2, страницы 12–22 (Mi thsp71)

On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients

V. V. Buldygin, O. A. Tymoshenko

Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine (KPI), 37, Prosp. Peremogy, Kyiv 03056, Ukraine

Аннотация: We study the exact order of growth of the solution of the stochastic differential equation $d\eta (t)=g \left(\eta (t)\right)\varphi (t)dt +\sigma \left(\eta (t)\right)\theta (t)dw(t),$ $X(0)=b,$ where $w$ is the standard Wiener process, $b$ is a nonrandom positive constant, $g$, $\sigma$ are continuous positive functions, and $\varphi$ and $\theta$ are real continuous functions such that a continuous solution $\eta$ exists. As an application of these results, we discuss the problem of asymptotic equivalence for solutions of stochastic differential equations.

Ключевые слова: Exact order of growth, equivalent solutions.

MSC: Primary 60G50, 60G15; Secondary 40C05

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024