Аннотация:
В данной работе получены классические решения задач для квазилинейного гиперболического уравнения второго порядка в случае двух независимых переменных с заданными для искомой функции условиями в сочетании как на характеристических линиях, так и на нехарактеристических линиях. Задачи сводятся к системе уравнений с вполне непрерывным оператором. Решения строятся методом последовательных приближений. Проводятся обоснования. Кроме того, показывается для каждой рассмотренной задачи и единственность полученного классического решения. Доказаны необходимые и достаточные условия согласования заданных функций в случае каждой из рассмотренных в статье задач, при выполнении которых классические решения их существуют при наличии определенной гладкости заданных функций.