Аннотация:
Для систем, линейных по управлениям, рассмотрены задачи реконструкции динамики и управления по апостериорной статистике замеров траекторий и известной оценке неточности этих замеров. Вводится задача оптимального управления на минимум интегрального регуляризованного функционала невязки динамики и статистики. С помощью оптимального синтеза строятся управления и траектории, которые аппроксимируют решение обратной задачи. Разработан численный метод аппроксимации, базирующийся на методе характеристик для уравнения Гамильтона–Якоби–Беллмана и концепции минимаксного/вязкостного решения. Получены достаточные условия, при которых предлагаемые аппроксимации сходятся к нормальному решению обратной задачи при согласованном стремлении к нулю параметров аппроксимации (оценки точности измерений, регуляризирующего параметра, шага сетки по фазовой переменной и шага интегрирования). Приведены результаты численного решения задач идентификации и реконструкции управлений и траекторий для механической модели гравитации при заданной статистике измерений фазовых координат.