RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2015, том 21, номер 2, страницы 187–197 (Mi timm1181)

Одношаговые численные методы для решения смешанных функционально-дифференциальных уравнений

В. Г. Пименовab, М. А. Паначевa

a Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург
b Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург

Аннотация: Уравнения в частных производных первого порядка методом характеристик сводятся к обыкновенным дифференциальным уравнениям; если же в исходном уравнении имеется эффект запаздывания, аналогичный прием сводит уравнение к смешанному функционально-дифференциальному уравнению, в котором есть эффекты влияния по пространственной переменной и наследственности по времени. В работе приводятся конструкции одношаговых многоэтапных методов (аналогов явных методов Рунге — Кутты) численного решения смешанных функционально-дифференциальных уравнений с применением двумерной интерполяции вырожденными сплайнами. Исследуются порядки сходимости и приведены результаты численных экспериментов на тестовых примерах.

Ключевые слова: смешанные функционально-дифференциальные уравнения, численный алгоритм, двумерная интерполяция, экстраполяция, сходимость.

УДК: 519.62



Реферативные базы данных:


© МИАН, 2025