Аннотация:
В гильбертовом пространстве $L_{2,\mu}[-1,1]$ с весом Чебышёва $\mu(x):=1/\sqrt{1-x^{2}}$ получены неравенства типа Джексона — Стечкина между величиной $E_{n-1}(f)_{L_{2,\mu}}$ наилучшего приближения функции $f$ алгебраическими многочленами степени не выше $n-1$ и обобщенным модулем непрерывности $m$-го порядка $\Omega_{m}({\mathcal D}^{r}f;t),$ где ${\mathcal D}$ — некоторый
дифференциальный оператор второго порядка. Для классов функций $W^{(2r)}_{p,m}(\Psi)$ ($m,r\in\mathbb{N}$, $1/(2r)<p\le2$), определяемых указанным модулем непрерывности и заданной мажорантой
$\Psi(t)$ ($t\ge0$), удовлетворяющей определенным ограничениям, вычислены значения различных $n$-поперечников в пространстве $L_{2,\mu}[-1,1]$.