Аннотация:
Пусть $\Gamma$ антиподальный граф с массивом пересечений $\{2r+1,2r-2,1;1,2,2r+1\}$, $2r(r+1)\le 4096$. Если $2r+1$ - степень простого числа, то конструкция Мэтона обеспечивает существование реберно симметричного графа с данным массивом пересечений. Отметим, что $2r+1$ - не степень простого числа только для $r\in \{7,17,19,22,25,27,31,32,37,38,42,43\}$. В данной работе изучаются автоморфизмы гипотетических дистанционно регулярных графов с указанными значениями $r$. Случаи $r\in \{7,17,19\}$ рассмотрены ранее. Доказано, что если $\Gamma$ - вершинно симметричный граф с массивом пересечений $\{2r+1,2r-2,1;1,2,2r+1\}$, $2r+1$ - не степень простого числа и $r\le 43$, то $r=25,27,31$.