Аннотация:
В работе рассматривается задача о движении тяжелого твердого тела в бесконечном объеме идеальной
безвихревой несжимаемой жидкости. Данная задача обобщает классическую задачу Кирхгофа, описывающую движение твердого тела в жидкости по инерции. Исследованы различные частные постановки задачи: плоское движение и движение осесимметричного тела. В общем случае движения твердого тела исследована устойчивость частных решений и указаны предельные режимы движения при бесконечном возрастании времени. С помощью численных расчетов на плоскости начальных условий построены области, отвечающие различным типам асимптотического поведения. Установлен фрактальный характер границы, разделяющей эти области.