RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2016, том 22, номер 3, страницы 153–159 (Mi timm1330)

Эта публикация цитируется в 1 статье

Вычислительная сложность задачи вершинного покрытия в классе планарных триангуляций

К. С. Кобылкинab

a Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
b Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург

Аннотация: В работе исследуется вычислительная сложность задачи вершинного покрытия в классе простых планарных графов (планарных триангуляций), допускающих плоское представление, имеющее только треугольные грани. Показывается NP-трудность задачи в сильном смысле в классе 4-связных планарных триангуляций со степенями всех вершин порядка $O(\log n),$ где $n$ - число вершин, а также в классе плоских 4-связных триангуляций Делоне, основанных на треугольном расстоянии Минковского. Смежность пары вершин в такой триангуляции имеет место тогда и только тогда, когда для некоторых $p\in\mathbb{R}^2$ и $\lambda>0$ найдется равносторонний треугольник $\nabla(p,\lambda)$, не содержащий внутри себя вершин триангуляции и имеющий границу, которая включает эту пару вершин и только ее, где $\nabla(p,\lambda)=p+\lambda\nabla=\{x\in\mathbb{R}^2\colon x=p+\lambda a,a\in\nabla\},$ $\nabla$ - равносторонний треугольник с единичными сторонами, имеющий $0$ в качестве барицентра, при этом одна из вершин $\nabla$ лежит на отрицательной $y$-оси.

Ключевые слова: вычислительная сложность, триангуляция Делоне, TD-триангуляция Делоне.

УДК: 519.161

MSC: 68Q25, 05C10, 05C70

Поступила в редакцию: 02.04.2016

DOI: 10.21538/0134-4889-2016-22-3-153-159


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, 299, suppl. 1, 106–112

Реферативные базы данных:


© МИАН, 2024