Аннотация:
В комплексном банаховом пространстве задан плотно определенный линейный инъективный оператор $A$, регулярное множество которого содержит отрицательную вещественную полуось. На ней известна степенная асимптотическая оценка нормы резольвенты этого оператора в нуле и в бесконечности.
В работе изучаются некоторые классы функций данного оператора, построенных (с учетом интегральной формулы Коши) на базе соответствующих скалярных аналитических функций, имеющих степенные асимптотические оценки модуля в нуле и в бесконечности.
Установлен ряд свойств операторных функций, в частности, мультипликативное свойство и свойство обратимости.
Доказано, что линейная комбинация целых степеней произвольного линейного инъективного оператора с непустым резольвентным множеством (при естественных ограничениях на ее коэффициенты) — замкнутый оператор, а функции оператора $A$, построенные для линейной комбинации скалярных степенных функций с целыми показателями, совпадают с соответствующей линейной комбинацией степеней этого оператора.
Ключевые слова:линейный замкнутый оператор, функции от оператора, мультипликативное свойство, обратимость.