Аннотация:
Для уравнения с нелинейным дифференцируемым оператором, действующим в гильбертовом пространстве, исследуется двухэтапный метод построения регуляризующего алгоритма. А именно сначала используется схема регуляризации Лаврентьева, а затем к регуляризованному уравнению применяется метод Ньютона, либо нелинейные аналоги $\alpha$-процессов: метод минимальной ошибки, метод минимальной невязки и метод наискорейшего спуска. Для этих процессов устанавливается линейная скорость сходимости и свойство фейеровости итераций. Рассматриваются два случая: оператор задачи является либо монотонным, либо оператор - конечномерный, производная которого имеет неотрицательный спектр. Для двухэтапного метода с монотонным оператором дается оценка погрешности, оптимальная по порядку на классе истокообразно представимых решений. Для второго случая погрешность метода оценивается по невязке. Обсуждаются результаты численного эксперимента при реализации исследуемых методов и их модифицированных аналогов для трехмерных обратных задач гравиметрии и магнитометрии.
Ключевые слова:схема регуляризации Лаврентьева, метод Ньютона, нелинейные $\alpha$-процессы, двухэтапный метод, обратные задачи гравиметрии и магнитометрии.