Аннотация:
Рассматривается задача оптимального распределенного управления в плоской выпуклой области с гладкой границей и малым параметром при старших производных эллиптического оператора. На границе области в этой задаче задано нулевое условие Дирихле, а управление аддитивно входит в неоднородность. В качестве множества допустимых управлений используется единичный шар в соответствующем пространстве функций, суммируемых с квадратом. Решение получающихся краевых задач рассматриваются в обобщенном смысле как элементы некоторого гильбертова пространства. В качестве критерия оптимальности выступает сумма квадрата нормы отклонения состояния от заданного и квадрата нормы управления с некоторым коэффициентом. Такая структура критерия оптимальности позволяет, при необходимости, усилить роль либо первого, либо второго слагаемого в этом критерии. В первом случае более важным является достижение заданного состояния, а во втором случае - минимизация ресурсных затрат. Подробно изучена асимптотика задачи, порожденная оператором Лапласа с малым коэффициентом, к которому прибавлен дифференциальный оператор первого порядка. Особенностью задачи является наличие характеристик предельного оператора, которые касаются границы области. Получено полное асимптотическое разложение по степеням малого параметра решения задачи в случае, когда оптимальное управление есть внутренняя точка множества допустимых управлений.
Ключевые слова:сингулярные задачи, оптимальное управление, краевые задачи для систем уравнений в частных производных, асимптотические разложения.