Аннотация:
Статья посвящена исследованию системы уравнений первого порядка типа Гамильтона - Якоби. Рассматривается сильно связанная иерархическая система: первое уравнение не зависит от второго, а гамильтониан второго уравнения зависит от градиента решения первого уравнения. Данная система допускает последовательное решение. Решение первого уравнения понимается в смысле теории минимаксных (вязкостных) решений и получается с использованием формулы Лакса-Хопфа. Подстановка решения первого уравнения во второе уравнение Гамильтона-Якоби приводит к уравнению Гамильтона-Якоби с разрывным гамильтонианом. Его решение основано на концепции М-решений, введенной А.И. Субботиным и выбирается в классе многозначных отображений. Таким образом, решение исходной системы является прямым произведением однозначного и многозначного отображений, удовлетворяющих первому и второму уравнениям в минимаксном смысле и в смысле М-решений. Для случая, когда решение первого уравнения недифференцируемо лишь вдоль одной линии Ранкино-Гюгонио доказаны теоремы существования и единственности. Для решения системы получена репрезентативная формула в терминах характеристик Коши. Исследованы свойства решения и их зависимость от параметров задачи.
Ключевые слова:система уравнений Гамильтона-Якоби, минимаксное решение, M-решение, метод характеристик Коши.