Аннотация:
В работе предложен новый сильно-динамически устойчивый принцип оптимальности кооперативной дифференциальной игры. Это делается путем построения некоторого подмножества ядра кооперативной игры. Предлагается считать это подмножество новым принципом оптимальности в рассматриваемом классе игр. Построение производится на основе введения функции $\hat{V}$, доминирующей значения классической характеристической функции по коалициям. Пусть $V(S ,\bar{x}(\tau), T-\tau)$ значение классической характеристической функции, вычисленной в подыгре с начальными условиями $\bar{x}(\tau)$, $T-\tau$ на кооперативной траектории. Определим функцию $\hat{V}$ по формуле $$\hat{V} (S;x_0,T-t_0) = \displaystyle \max_{t_0\leq \tau\leq T}\frac{V(S;x^*(\tau),T-\tau)}{V(N;x^*(\tau),T-\tau)}V(N;x_0,T-t_0).$$ На основе функции $\hat{V} (S;x_0,T-t_0)$ строится аналог классического ядра. В работе показано, что построенное таким образом ядро является подмножеством классического ядра. Последнее обстоятельство позволяет рассматривать его как новый принцип оптимальности. Доказывается, что этот вновь построенный принцип оптимальности является сильно-динамически устойчивым.