RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2017, том 23, номер 2, страницы 10–21 (Mi timm1408)

Эта публикация цитируется в 2 статьях

Алгоритмы повышенной точности аппроксимации линий разрыва зашумленной функции

А. Л. Агеевab, Т. В. Антоноваa

a Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
b Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург

Аннотация: В работе рассматривается задача локализации (определения положения) линий разрыва зашумленной функции двух переменных. Такого рода задачи возникают при обработке изображений, поскольку границы объектов часто являются линиями разрыва. Предполагается, что в окрестности линий разрыва функция двух переменных гладкая, а в каждой точке на линиях имеет разрыв первого рода. Вместо точной функции известны ее приближение в пространстве $L_2$ и уровень погрешности измерений $\delta$. Для возмущений такого рода задача относится к нелинейным некорректно поставленным проблемам, и для ее решения требуется строить регуляризирующие алгоритмы. В работе строятся и исследуются регуляризирующие дискретные алгоритмы усреднения “с поворотом”. Предложены новые законы выбора параметров регуляризации и усовершенствованы способы проведения оценок точности локализации. Получены оценки точности локализации особенностей порядка $O(\delta^{4/3})$ при более жестких условиях разделимости: порог разделимости в настоящей работе имеет порядок $O(\delta^{2/3}).$ В то время как в предшествующих работах авторов, посвященных этой задаче, оценки точности локализации и порога разделимости имеют порядок $O(\delta).$ Кроме того, впервые проведено теоретическое исследование дискретизации (указаны условия на шаг дискретизации) алгоритмов усреднения “с поворотом”.

Ключевые слова: некорректная задача, регуляризующий алгоритм, локализация особенностей, разрыв первого рода, линия разрыва.

УДК: 517.988.68

MSC: 65J20, 68U10

Поступила в редакцию: 22.12.2016

DOI: 10.21538/0134-4889-2017-23-2-10-21


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, 303, suppl. 1, 1–11

Реферативные базы данных:


© МИАН, 2024