Аннотация:
Рассматривается система дифференциальных уравнений, которая описывает взаимодействие двух слабо связанных нелинейных осцилляторов. Начальные данные таковы, что при отсутствии связи один из осцилляторов находится вдали от равновесия, а другой вблизи равновесия; при этом собственные частоты близки. Исследуется эффект захвата в резонанс, когда частоты связанных осцилляторов остаются близкими, а амплитуды колебаний значительно меняются со временем, в частности, второй осциллятор уходит далеко от равновесия. Выяснено, что начальный этап захвата в резонанс описывается решением уравнения Пенлеве-II. Такое описание получено в асимптотическом приближении по малому параметру, который соответствует коэффициенту связи.