RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2017, том 23, номер 4, страницы 63–76 (Mi timm1467)

Эта публикация цитируется в 2 статьях

Простые дуги в плоских кривых и в диаграммах узлов

Ю. С. Белоусовa, А. В. Малютинba

a Санкт-Петербургский государственный университет, г. Санкт-Петербург
b Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН, г. Санкт-Петербург

Аннотация: В настоящей работе изучаются простые дуги в плоских кривых и в минимальных диаграммах классических узлов. Обозначив через $\operatorname{cr}(K)$ число перекрестков узла $K$, основные результаты статьи можно сформулировать следующим образом: 1) В каждой минимальной диаграмме произвольного узла $K$ найдется простая дуга, проходящая через $\min\{\operatorname{cr}(K),6\}$ перекрестков. 2) У любого узла $K$, за исключением четырех простых узлов $8_{16}$, $8_{18}$, $9_{40}$ и $10_{120}$ в нумерации Рольфсена, найдется минимальная диаграмма, содержащая простую дугу, проходящую через $\min\{\operatorname{cr}(K),8\}$ перекрестков. Первое утверждение доказывается с использованием техники комбинаторики слов. Мы вводим новый язык для плоских кривых и их хордовых диаграмм. Символы этого языка отвечают длинам хорд. В результате утверждение сводится к вопросу из теории полноты и избегаемости множеств запрещенных слов: мы описываем множество запрещенных слов и доказываем, что язык, слова которого не содержат запрещенных подслов, конечен. Для доказательства второго факта использовались методы алгоритмической топологии: утверждение теоремы сводится к перебору кривых специального вида, после чего описывается компьютерный алгоритм, осуществляющий перебор, и приводится результат его работы.

Ключевые слова: узел, минимальная диаграмма узла, число перекрестков, флайп, плоская кривая, комбинаторика слов, алгоритмическая топология.

УДК: 515.162.8

MSC: 57M25, 57M99

Поступила в редакцию: 30.09.2017

DOI: 10.21538/0134-4889-2017-23-4-63-76



Реферативные базы данных:


© МИАН, 2024