Аннотация:
Изучается проблема Штейнера в пространстве Громова–Хаусдорфа, т. е. в пространстве компактных метрических пространств (рассматриваемых с точностью до изометрии) с расстоянием Громова–Хаусдорфа. Так как это пространство не является ограниченно компактным, вопрос существования кратчайшей сети, соединяющей конечное множество точек в этом пространстве, открыт. В работе доказано, что каждое конечное семейство конечных метрических пространств соединяется некоторой кратчайшей сетью. Более того, оказалось, что в рассматриваемом случае среди кратчайших деревьев найдется дерево, все вершины которого суть конечные метрические пространства. Получена оценка числа элементов в этих пространствах. В качестве примера разобран случай трехточечных метрических пространств. Также показано, что пространство Громова–Хаусдорфа не реализует минимальные заполнения, т. е. кратчайшие деревья в нем не обязаны быть минимальными заполнениями своих границ.
Ключевые слова:проблема Штейнера, кратчайшая сеть, минимальное дерево Штейнера, минимальное заполнение, пространство Громова–Хаусдорфа, расстояние Громова–Хаусдорфа.