Аннотация:
В 2009 г. С. В. Матвеев ввел понятие виртуального трехмерного многообразия, обобщающее понятие классического трехмерного многообразия. Виртуальное многообразие есть класс эквивалентности так называемых специальных полиэдров. Каждое виртуальное многообразие определяет трехмерное многообразие с непустым краем и $\mathbb{R}P^2$-особенностями. Многие инварианты многообразий, например, инварианты Тураева–Виро, допускают продолжение на множество виртуальных многообразий.
Cложность виртуального трехмерного многообразия равна $k$, если его класс эквивалентности содержит специальный полиэдр с $k$ истинными вершинами и не содержит специальных
полиэдров с меньшим числом истинных вершин. В данной работе приводится полный список виртуальных многообразий сложности $1$ и даны двусторонние оценки на число виртуальных многообразий сложности $2$. Вопрос о полной классификации виртуальных многообразий сложности $2$ по-прежнему остается открытым.