Аннотация:
В топологии известны результаты о сохранении в процессе гомотопии свойства отображения некоторых пространств в себя иметь неподвижную точку, если число Лефшеца исходного отображения отлично от нуля. Для класса сжимающих отображений метрических пространств и некоторых их обобщений известны результаты М. Фригон о сохранении при гомотопиях некоторого специального типа свойства сжимаемости отображения и, следовательно, свойства иметь неподвижную точку.
В 1984 г. Дж. Уолкер предложил дискретный аналог гомотопии отображений упорядоченного множества — порядковую изотонную гомотопию. P. Стонг показал естественность такого понятия и связь его с обычной непрерывной гомотопией.
Недавно автор и Д. А. Подоприхин обобщили понятие порядковой изотонной гомотопии Уолкера и нашли достаточные условия для сохранения в процессе такой дискретной гомотопии (пары гомотопий) свойства отображения (пары отображений) упорядоченных множеств иметь неподвижную точку (точку совпадения). Данная статья содержит метрические аналоги этих результатов и некоторые их следствия. Используется метод упорядочения метрического пространства, предложенный в 1974 г. А. Брондстедом.
Ключевые слова:неподвижная точка, точка совпадения, порядок Брондстеда, порядковая гомотопия, дискретный аналог гомотопии.