RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2018, том 24, номер 1, страницы 8–14 (Mi timm1492)

О порождающих алгебры матриц и ее некоторых подалгебр

А. А. Азамов

Институт математики им. В. И. Романовского АН УзССР

Аннотация: Показывается, что полная алгебра матриц $M_n$ допускает систему порождающих из двух нильпотентных матриц $P,$ $Q$ таким образом, что любая матрица $A = (a_{ij})$ выражается явно через $P$ и $Q$ в виде $A = \sum_{i\neq j}a_{ij}P^{i-1}QP^{n-j};\, i,j = 1, 2, \ldots, n.$ Приводится приложение этого представления к вычислению степеней матрицы коэффициентов $A$ линейной системы $x_{n+1}=Ax_n+r_n,$ моделирующей процесс теплообмена в регенеративных воздухоподогревателях. При этом получаются удобные рекуррентные формулы для элементов $A^{k}, k=1, 2, \ldots,\,.$ Рассматривается также задача построения простых систем порождающих для подалгебр диагональных и треугольных матриц. Отмечено, что порождающая матрица подалгебры диагональных матриц связана с интерполяционной формулой Лагранжа. Установлено, что подалгебра треугольных матриц $T_n$ порождается диагональной матрицей с попарно различными элементами и первой косой диагональю. Показано, что треугольная матрица $A\in T_n$ с попарно различными диагональными элементами может быть приведена к жордановой форме в пределах самой подалгебры $T_n,$ т. е. существует $L\in T_n,$ такая, что $L^{-1}AL$ будет диагональной. В общем случае это свойство не имеет места для произвольных матриц из $T_n.$

Ключевые слова: алгебра матриц, система образующих, нильпотентная матрица, матричная единица, подалгебра, жорданова форма, интерполяционный многочлен, дискретная система, воздухонагреватель, теплообмен.

УДК: 517.977

MSC: 15A30, 15B99

Поступила в редакцию: 18.10.2017

DOI: 10.21538/0134-4889-2018-24-1-8-14



Реферативные базы данных:


© МИАН, 2024