Аннотация:
Рассматривается задача оптимального управления для автономного дифференциального включения со свободным временем и функционалом смешанного типа, содержащим в интегральном члене характеристическую функцию заданного открытого множества $M\subset\mathbb{R}^n$. Постановка данной задачи ослабляет постановку классической задачи оптимального управления с фазовым ограничением на случай, когда нахождение допустимых траекторий системы в множестве $M$ физически возможно, но нежелательно, например, исходя из соображений безопасности или неустойчивости системы. При помощи метода аппроксимаций получены необходимые условия оптимальности допустимой траектории в форме гамильтонова включения Кларка, содержащие нестандартное условие стационарности гамильтониана. Так же как и в случае задачи с фазовым ограничением, полученные необходимые условия оптимальности могут вырождаться. Приведены условия, гарантирующие их невырожденность и поточечную нетривиальность. Полученные результаты распространяют предыдущие результаты автора на случай задачи со свободным временем и более общим функционалом.
Ключевые слова:зона риска, фазовые ограничения, оптимальное управление, гамильтоново включение, принцип максимума Понтрягина, условия невырожденности.