Аннотация:
Исследуется задача формирования траектории в заданном “коридоре” из $\mathbb{R}^2$, минимум расстояния которой от наблюдателей максимален. Каждый наблюдатель расположен вне коридора и имеет открытый выпуклый конус наблюдения, который перекрывает коридор. Положение наблюдателей и конусов фиксировано. Расстояние до движущегося по траектории объекта наблюдатель измеряет, когда объект находится внутри его конуса. В статье дано описание “оптимального коридора” - множества всех оптимальных траекторий с заданными начальной и конечной точками. Аналогичная задача решена в случае, когда движущийся объект - телесный - является замкнутым кругом. Для практических расчетов в работе предлагаются алгоритмы построения оптимального коридора и кратчайшей оптимальной траектории в дискретной постановке для телесного объекта. Исходные непрерывные условия задачи, такие как границы коридора и конусы наблюдения, проектируются на дискретную регулярную сетку, и на ней строятся дискретная реализация оптимального коридора, его границы в виде 8-связных последовательностей узлов сетки, а также с помощью алгоритма Дейкстры находится кратчайшая оптимальная траектория телесного объекта.