Аннотация:
Работа посвящена исследованию свойств броуновского листа - случайного поля, обобщающего процесс броуновского движения. Показано, что в качестве определения этой случайной функции, как и для процесса броуновского движения, можно использовать различные наборы свойств. Приведены четыре определения процесса броуновского движения и на их основе сформулированы четыре определения броуновского листа. Одним из интересных и ключевых в обсуждаемом контексте свойств броуновского движения является тот факт, что процесс с непрерывными траекториями и независимыми приращениями, стартующий из нуля, является гауссовским (теорема Дж. Дуба). В работе доказано обобщение этого утверждения на случай случайных полей, что позволило доказать эквивалентность сформулированных определений броуновского листа.