Аннотация:
Настоящая работа посвящена сравнению двух подходов к исследованию связи между процессами с заданным набором свойств, определяемых свойствами решений стохастических уравнений со случайностями типа винеровских процессов и уравнениями в частных производных для вероятностных характеристик этих процессов, включая уравнения для плотностей переходных вероятностей. Первый подход основан на применении формулы Ито для диффузионных процессов - решений стохастических уравнений, второй - на свойствах непрерывности процесса и существовании пределов, характеризующих локальное поведение решений стохастического уравнения. В ходе сравнения установлено следующее. В первом подходе для доказательства конкретной связи между коэффициентами стохастического уравнения и соответствующего уравнения в частных производных определяющими являются свойства марковости и мартингальности функций от решения стохастического уравнения. В основе второго подхода лежит существование глобальных моментов первого и второго порядков для решений стохастических задач Коши, которые в случае стохастических уравнений со случайностями типа винеровских процессов, определяют их локальное поведение. В качестве приложения показано моделирование стохастической задачи для некоторой конкретной системы через связь с уравнениями для переходных вероятностей процесса, определяемых статистическими данными.