RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2018, том 24, номер 3, страницы 16–26 (Mi timm1546)

Эта публикация цитируется в 5 статьях

Дистанционно регулярные графы Шилла с $b_2 = sc_2$

И. Н. Белоусовab

a Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
b Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург

Аннотация: Графом Шилла называется дистанционно регулярный граф $\Gamma$ диаметра 3, имеющий второе собственное значение, равное $a = a_3$. Граф Шилла имеет массив пересечений ${ab, (a+1)(b-1),b_2; 1,c_2,a(b- 1)}$. Дж. Кулен и Ж. Пак показали, что для заданного числа b существует только конечное число графов Шилла. Там же они нашли всевозможные допустимые массивы пересечений графов Шилла для $b\in \{2,3\}$. Ранее автором совместно с А. А. Махневым изучены графы Шилла с $b_2 = c_2$. В данной работе исследуются графы Шилла с $b_2 = sc_2$; здесь $s$ - целое число, большее 1. Для графов Шилла с указанным условием и вторым неглавным собственным значением -1 найдены пять бесконечных серий допустимых массивов пересечений. Показано, что в случае графов Шилла без треугольников с условием $b_2 = sc_2$ и $b < 170$ возможны лишь 6 допустимых массивов пересечений. В случае Q-полиномиального графа Шилла с условием $b_2 = sc_2$ найдены допустимые массивы пересечений в случаях $b = 4$ и $b = 5$. На основании этого результата удалось получить список допустимых массивов пересечений графов Шилла для $b\in \{4,5\}$ в общем случае.

Ключевые слова: дистанционно регулярный граф, автоморфизм графа.

УДК: 519.17

MSC: 05C25

Поступила в редакцию: 20.02.2018

DOI: 10.21538/0134-4889-2018-24-3-16-26


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2019, 307, suppl. 1, S23–S33

Реферативные базы данных:


© МИАН, 2024