Аннотация:
Пусть $\mathfrak{M}_{\sigma,n}^p$, $p>0,$ есть множество целых функций $f$ от $n$ комплексных переменных, имеющих экспоненциальный тип $\sigma=(\sigma_1,\ldots,\sigma_n),$$\sigma_k>0,$ сужение которых на $\mathbb{R}^n$ принадлежит $L^p(\mathbb{R}^n).$ В 1937 г. Планшерель и Полиа показали, что справедливо неравенство $\sum_{k \in \mathbb{Z}^n}|f(k)|^p \le c_p(\sigma, n) \|f\|^p_{L^p(\mathbb{R}^n)},$ $f\in \mathfrak{M}_{\sigma,n}^p,$ с конечной константой $c_p(\sigma, n)$. В работе изучается неравенство Планшереля - Полиа при $p=2$. Если $0<\sigma_k\le \pi,$ то в силу теоремы отсчетов Уитткера - Котельникова - Шеннона и ее обобщения на многомерный случай, установленного Планшерелем и Полиа, $c_2(\sigma, n)=1$ и любая функция $f\in \mathfrak{M}_{\sigma,n}^2$ является экстремальной. В общем случае в работе доказано, что $c_2(\sigma, n)=\prod_{k = 1}^{n}\left\lceil~\sigma_k/\pi \right\rceil~$, и описан класс экстремальных функций. Также выписана двойственная задача $\big|\sum _{k \in \mathbb{Z}^n} (g\ast g)(k)\big| \le d_2(\sigma,n) \|g\|_2^2,$ $g \in L^2\left(\Omega\right).$ Доказано равенство $c_2(\sigma,n)=d_2(\sigma,n)$ и описан класс экстремальных функций.
Ключевые слова:неравенство Планшереля - Полиа, пространство Пэли - Винера, целая функция экспоненциального типа, преобразование Фурье.