RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2018, том 24, номер 3, страницы 68–72 (Mi timm1552)

Исключительные псевдогеометрические графы с собственным значением r

А. Х. Журтов

Кабардино-Балкарский государственный университет им. Х. М. Бербекова, г. Нальчик

Аннотация: А. Ноймайер перечислил параметры сильно регулярных графов с наименьшим собственным значением $-m$. Как следствие, доказано, что для данного натурального числа $r$ существует лишь конечное число псевдогеометрических графов для $pG_{s-r}(s,t)$ с параметрами, отличными от параметров сети $pG_{s-r}(s,s-r)$ и от параметров $pG_{s-r}(s,(s-r)(r+1)/r)$ ($s$ делится на $r$) дополнительного графа для блочного графа 2-схемы Штейнера. В работе явно указаны такие функции $f(r)$, $g(r)$, что для $s>f(r)$ или для $t>g(r)$ любой псевдогеометрический граф для $pG_{s-r}(s,t)$ имеет параметры сети $pG_{s-r}(s,s-r)$ или параметры $pG_{s-r}(s,(s-r)(r+1)/r)$.

Ключевые слова: сильно регулярный граф, псевдогеометрический граф.

УДК: 519.17

MSC: 05C25

Поступила в редакцию: 05.06.2018

DOI: 10.21538/0134-4889-2018-24-3-68-72



Реферативные базы данных:


© МИАН, 2024