Аннотация:
Если дистанционно регулярный граф $\Gamma$ диаметра 3 содержит максимальный 1-код $C$, являющийся локально регулярным и совершенным относительно последней окрестности, то $\Gamma$ имеет массив пересечений $\{a(p+1),cp,a+1;1,c,ap\}$ или $\{a(p+1),(a+1)p,c;1,c,ap\}$, где $a=a_3,c=c_2,p=p^3_{33}$ (Юришич и Видали). В первом случае $\Gamma$ имеет собственное значение $\theta_2=-1$ и граф $\Gamma_3$ является псевдогеометрическим для $GQ(p+1,a)$, во втором случае $\Gamma$ является графом Шилла. В работе изучаются графы с массивом пересечений $\{a(p+1),cp,a+1;1,c,ap\}$, в которых любые две вершины, находящиеся на расстоянии 3, лежат в максимальном 1-коде. В частности, найдены новые бесконечные серии допустимых массивов пересечений: $\{a(a-2),(a-1)(a-3),a+1;1,a-1,a(a-3)\}$, $a\ge 5$, $\{a(2a+3),2(a-1)(a+1),a+1;1,a-1,2a(a+1)\}$, $a$ не сравнимо с $1$ по модулю $3$, $\{a(2a-3),2(a-1)(a-2),a+1;1,a-1,2a(a-2)\}$, $a$ четно и не сравнимо с $1$ по модулю $3$, $\{a(3a-4),(a-1)(3a-5),a+1;1,a-1,a(3a-5)\}$, $a$ четно и сравнимо с $0$ или $2$ по модулю $5$.