Аннотация:
В работе строится линейный метод восстановления псевдодифференциальных операторов на $m$-мерном торе с символами из специальных классов, использующий линейную спектральную информацию о символе оператора и о функции (конечные наборы их коэффициентов Фурье). Даются оценки погрешности восстановления в пространстве $L_r(\mathbb{T}^m)$ значений этих псевдодифференциальных операторов на элементах функциональных пространств типа Никольского - Бесова и Лизоркина - Трибеля для ряда соотношений между $r$, параметрами классов символов и функциональных пространств (теорема 1). При доказательстве этих оценок ключевую роль играет ограниченность рассматриваемых псевдодифференциальных операторов между подходящими функциональными пространствами типа Никольского - Бесова (соответственно, Лизоркина - Трибеля) (теорема 2).
Ключевые слова:псевдодифференциальный оператор на m-мерном торе, класс символов (типа произведения), функциональное пространство типа Никольского - Бесова / Лизоркина - Трибеля, восстановление оператора, оценки погрешности восстановления.