RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2019, том 25, номер 2, страницы 137–148 (Mi timm1630)

Эта публикация цитируется в 2 статьях

Построение оптимальных покрытий выпуклых плоских фигур кругами различного радиуса

П. Д. Лебедевab, А. Л. Казаковc

a Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
b Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург
c Институт динамики систем и теории управления имени В.М. Матросова Сибирского отделения Российской академии наук, г. Иркутск

Аннотация: Рассматривается задача о построении оптимального покрытия плоской фигуры $M$ объединением заданного числа кругов. Считается, что радиус каждого круга в общем случае различается и равен произведению индивидуального для него положительного коэффициента на общий для всех элементов покрытия параметр $r.$ Критерием оптимальности выбрана минимизация величины $r$ при условии, что множество $M$ вложено в объединение кругов. Для набора точек $S$ выписано значение величины $r,$ определяющей минимальный радиус кругов с центрами в точках из $S,$ реализующих покрытие $M.$ Найдены выражения, позволяющие аналитически описать зоны влияния, так называемые обобщенные зоны Дирихле, точек из $S,$ которые существенно отличаются от выражений для случая конгруэнтных кругов. Предложена процедура итерационной коррекции координат $S $ на базе отыскания чебышевских центров областей влияния точек. Показано, что она не ухудшает свойства покрытия, при этом ее параметры можно менять в процессе запуска программного комплекса. Проведены численные эксперименты по построению оптимальных покрытий наборами кругов (при различных коэффициентах, задающих радиус каждого из них). В качестве фигур $M$ взяты различные выпуклые многоугольники, выполнена визуализация результатов.

Ключевые слова: оптимальное покрытие, обобщенная зона Дирихле, чебышевский центр, итерационный алгоритм, минимизация.

УДК: 514.174.3

MSC: 52C15, 49K10

Поступила в редакцию: 02.04.2019

DOI: 10.21538/0134-4889-2019-25-2-137-148



Реферативные базы данных:


© МИАН, 2024