RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2019, том 25, номер 3, страницы 73–85 (Mi timm1648)

Эта публикация цитируется в 4 статьях

Абстрактная выпуклость функций относительно множества липшицевых (вогнутых) функций

В. В. Гороховикa, А. С. Тыкунb

a Институт математики НАН Беларуси
b Белорусский государственный университет, механико-математический факультет

Аннотация: Настоящая работа посвящена абстрактной ${\mathcal H}$-выпуклости функций (${\mathcal H}$ — заданное множество элементарных функций) и ее реализации в случае, когда в качестве ${\mathcal H}$ рассматриваются пространство липшицевых функций и множество вогнутых липшицевых функций. В работе вводится новое понятие регулярно ${\mathcal H}$-выпуклых функций. Так названы функции, которые являются верхними огибающими множества максимальных (в смысле поточечного упорядочения) ${\mathcal H}$-минорант. Как обобщение понятия глобального субдифференциала выпуклой функции вводятся множество максимальных опорных ${\mathcal H}$-минорант к функции в заданной точке и множество нижних ${\mathcal H}$-опорных точек функции, в терминах которых затем устанавливаются достаточные, а также необходимые условия глобального минимума функции. Во второй части работы абстрактные понятия ${\mathcal H}$-выпуклости реализуются в конкретных случаях, когда функции определены на метрическом или нормированном пространстве $X$, а в качестве множества элементарных функций ${\mathcal{H}}$ рассматривается множество ${\mathcal{L}(X,{\mathbb R})}$ липшицевых или множество ${\mathcal{L}\widehat{C}(X,{\mathbb R})}$ вогнутых липшицевых функций. Важным результатом данной части статьи является доказательство того, что для полунепрерывной снизу функции, которая, кроме того, ограничена снизу липшицевой функцией, множество нижних ${\mathcal{L}}$-опорных точек и множество нижних ${\mathcal{L}\widehat{C}}$-опорных точек совпадают и являются плотными в ее эффективной области. Данные результаты распространяют на более широкий класс полунепрерывных снизу функций известную теорему Брондстеда — Рокафеллара о существовании субдифференциала для выпуклых полунепрерывных снизу функций и восходят к одному из важнейших результатов классического выпуклого анализа — теореме Бишопа — Фелпса о плотности опорных точек в границе замкнутого выпуклого множества.

Ключевые слова: абстрактная выпуклость, опорные миноранты, опорные точки, глобальный минимум, полунепрерывные фунции, липшицевы функции, вогнутые липшицевы функции, плотность опорных точек.

УДК: 517.27

Поступила в редакцию: 20.04.2019
Исправленный вариант: 15.05.2019
Принята в печать: 20.05.2019

DOI: 10.21538/0134-4889-2019-25-3-73-85


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, 309, suppl. 1, S36–S46

Реферативные базы данных:


© МИАН, 2024